About this category

We only work with the best qualities:

All our bins are made of high density polyethylene. It is the ideal manufacturing material for retaining and controlling hazardous and/or chemical substances because, in addition to being a very economical plastic, it has the following technical specifications:

High density polyethylene (HDPE):

High density polyethylene is a polymer that is characterized by:


      • Excellent thermal and chemical resistance.
      • Very good impact resistance.
      • It is solid, colorless and easy to apply any desired color.
      • Very good processability, i.e. it can be processed by the forming methods used for thermoplastics, such as injection and extrusion.
      • It is flexible, tough and very light.
      • It is more rigid than low density polyethylene.
      • It is easy to print, paint or glue on.
      • Its density is around 0.940 - 0.970 g/cm3.
      • It is not attacked by acids, a maximum working resistance of 60°C is considered for liquids, because at higher temperatures the useful life is reduced.
      • It is much better for mechanical and thermal recycling.



What is the temperature resistance of high density polyethylene?


Thermal Stability: In the complete absence of oxygen, polyethylene is stable up to 290 °C. Between 290 and 350 ºC, it decomposes and gives lower molecular weight polymers, which are usually thermoplastics or waxes, but little ethylene is produced.



High-density polyethylene (HDPE) is an unbranched straight-chain polymer. It is harder, stronger and slightly heavier than low-density polyethylene, but is less ductile. Polyethylene with a molecular weight between 3,000,000 and 6,000,000,000 is called UHMWPE (Ultra High Molecular Weight Polyethylene). This material is used to produce fibers that are so strong that they can be used to make bulletproof vests.



Obtaining High Density Polyethylene:


HDPE is obtained by a Ziegler-Natta polymerization process, which is a catalytic polymerization process (Ziegler-Natta catalyst). There are three major commercial processes used in the polymerization of HDPE: solution, suspension and gas phase processes.



The catalysts used in the manufacture of HDPE are generally of the transition metal oxide or Ziegler-Natta type. In this process a solvent is used which dissolves the monomer, the polymer and the polymerization initiator. By diluting the monomer with the solvent, the polymerization rate is reduced and the heat released by the polymerization reaction is absorbed by the solvent. Benzene or chlorobenzene can generally be used as solvents.




In bulk polymerization, only the monomer is polymerized, usually in a gas or liquid phase, although some solid state polymerizations are also carried out. This is a direct polymerization of monomers into a polymer, in a reaction in which the polymer remains soluble in its own monomer. Additionally, with Phillips catalysts (chromium trioxide), HDPE with very high density and straight chains is produced.




Advantages of PEHD:

A product made of polyethylene offers a number of important advantages over conventional systems:

-Minimal frictional load losses.
-It is not attacked in any way by corrosion.
-Absence of sediments and incrustations in its interior.
-Flexibility and elasticity.
-It does not maintain permanent deformations.
-Reduced weight, making it easy to transport.
-Longer lengths, which reduces the number of joints (lower cost) and reduces the possibility of human failure in the installation.
-Long service life due to mechanical strength and ductility.
-Lower acquisition and installation cost.
-Resistant to bacteria and chemicals.
-Polyethylene also has among its advantages that it is a recyclable product, which means that it can be used by third parties to manufacture, for example, plastic pallets, ornamental chairs, plastic flowerpots, etc.

[For more information about the history and characteristics of High Density Polyethylene: tecnologiadelosplasticos.blogspot.com]

What chemicals does polyethylene resist?

Below is a table of substances and chemicals compatible with our retention basins, drip pans, safe transfer stations and retention floors:

Table of compatibilities with Polyethylene


Table of compatibilities with Polyethylene
Aceite de Parafina Ácido Propionico 50% Clorhidrato de Hidracina Hidróxido de Amonio Sol. Sat. De Ácido Cianhídrico
Acetaldehído 40% Ácido Selénico Clorobenceno Hidróxido de Calcio Sol. Sat. De Ácido Crómico
Acetamida Ácido Silícico Cloroetanol Hidróxido de Magnesio Sol. Sat. De Bromuro de Cinc
Acetato Amílico Ácido Succínico Cloroformiato de Bencilo Hidróxido de Potasio Sol. Sat. De Cloruro de Cinc
Acetato de Amonio Ácido Sulfúrico 50% Cloruro de Amonio Hidróxido de Sodio Con. Sol. Sat. De Cloruro Férrico
Acetato de Butilo Acrilato Sódico Cloruro de Bario Hipoclorito de Sodio Sol. Sat. De Nitrato Férrico
Acetato de Isopropilo Acrilonitrilo Cloruro de Calcio Isopropanol Sol. Sat. De Sulfato Férrico
Acetato Metílico Agentes de Adherencia de


Cloruro de Potasio Líquido de Batería, Ácido Sol. Sat. Dextrina
Acetato Sódico sol. Sat. Álcalis Acuosos (NaOh) Cloruro de Sodio Mercurio Sol. Sat. Dextrosa
Acetona Alcohol Alílico 96% Cresol 90% Metanol Sol. Sat. Fluoruro de Sodio
Ácido Acetico 10% Alcohol Amílico Cromato de Potasio Monóxido de Carbono Sol. Sat. Fosfato Trisódico
Ácido Adípico Alcohol Bencílico Cromato de Sodio Morfolín Sol. Sat. Hidróxido de Bario
Ácido Arsénico Alcohol de Butilo Diamina de Etileno Benceno Mowilith D Sol. Sat. Metafosfato de Amonio
Ácido Asorbico 10% Alcohol Etílico Dicloruro de Propileno Nicotina Diluida Sol. Sat. Nitrato de Amonio
Ácido Benzoico Alcohol Isopropilo Dicromata de Potasio 40% Nitrato de Bario Sol. Sat. Nitrato de Hierro (III)
Ácido blanco 75% Alcohol Metílico Dioxano Nitrato de Calcio 50% Sol. Sat. Nitrato de Potasio
Ácido Bórico Concentrado Alcohol Propargílico 7% Disulfito de Sodio Nitrato de Cobre Sol. Sat. Perborato de Potasio
Ácido Bórico Diluído Alcohol Propílico Ditionito de Sodio Nitrato de Magnesio Sol. Sat. Persulfato de Potasio
Ácido Butírico Aldehído Crotónico Electrólito Nitrato de plata Sol. Sat. Solución de Almidón
Ácido Carbónico (Aq. C02) Alumbre (aqu.sol) Emulsiones de Parafina Nitrato de Sodio Sol. Sat. Sulfato de Aluminio
Ácido Cítrico 25% Amina Metílica 32% Etanol n-Octano Sol. Sat. Sulfato de Bario
Ácido Clórico 10% Amoníaco (100% Gas Seco) Éteres del Glicol Octyl Cresol Sol. Sat. Sulfato de Calcio
Ácido Cloroacético Amoníaco (Anhidro) Etileno Chlorohydrin Oxalato de Sodio Sol. Sat. Sulfato de Hierro (II)
Ácido Cresílico Amoníaco (aqu.sol.) Extractos Tánico Óxido de Magnesio Sol. Sat. Sulfato de Hierro (III)
Ácido Diglicolico 30% Amónico 50% Ferrocianuro de Sodio Óxido de Propileno Sol. Sat.Carbonato de Bario
Ácido Esteárico Anhídrido Ftálico Fluoruro de Aluminio Pentoxido de Fósforo Sol. Soda Cáustica 10%
Ácido Fluoborico Benzaldehído Fluoruro de Hidrógeno Perclorato de Potasio Sol.Hidrógeno Aluminio 10%
Ácido Fluorhídrico 40% Benzoato de Sodio Fluoruro de Potasio Permanganato de Potasio Sol.Sat. Sulfuro de Amonio
Ácido fluosilícico Bicarbonato de Sodio Formaldehido 40% Peróxido de Hidrógeno 90% Sol.Sat.Ferrocianuro de Sodio
Ácido Fórmico Bicromato de Potasio Formamida Persulfato de Sodio Sol.Sat.Persulfato Amonio
Ácido Fosfórico 50% Bifluoruro de Amonio Fosfato de Amonio Plomo Tetraetilo Sol.Sat.Tiocianato de Amonio
Ácido Ftálico Bisulfito de Sodio Fosfato de Sodio Potasa Sulfato de Cinc
Ácido Glicólico Blanqueador Clorox Fosfato de Tributilo Potasio/Aluminio Sulfato de Cobre
Ácido Glucónico Borato de Potasio 10% Fosfato Disódico Propanol Sulfato de Hidroxilamina
Ácido Hidrobrómico 50% Bromuro de Hidrógeno 10% Fosfatos de Potasio Sales de Antimonio Sulfato de Magnesio
Ácido Hidroclórico 36% Bromuro de Potasio Fósforo Amarillo Sales Férricas Sulfato de Metilo
Ácido Hidrofluorosilícico Bromuro de Sodio Fostato de Tricresilo Sat. Sol. Carbonato de Calcio Sulfato de Potasio
Ácido hidroiodico Butadieno Furfural Silicato de Sodio Sulfato de Sodio
Ácido Hipocloroso Butanediol Glicerina Sol. Ácido Tánico Sulfato Ferroso
Ácido Láctico (todo conc.) Butanol Glicol Sol. De Levadura Sulfatos 50%
Ácido Maleico Butileno Glicol Glicol de Dietileno Sol. Hipoclorito de Calcio Sulfonatos de Sodio
Ácido Málico 1% Carbonato de Amonio 50% Glicol de Etileno Sol. Potasa Cáustica 50% Sulfuro
Ácido Metil Sulfúrico Carbonato de Dietilo Glicol de Propileno Sol. Pulpa de Fruta Sulfuro de Bario
Ácido Monocloroacético Ester Ethyl Carbonato de Magnesio Heptano Sol. Sat. Acetato de Plomo Sulfuro de Hidrógeno
Ácido Monocloroacético Ester Methyl Carbonato de Sodio Hexanel Tert Sol. Sat. Ácido Gálico Sulfuro de Sodio
Ácido Muriático Cáustico (acuoso) Hexano Sol. Sat. Ácido Tartárico Tiosulfato de Sodio
Ácido Nicotínico Cianuro de Bario Hidracina 35% Sol. Sat. Alumbre de Cromo Tricloruro de Antimonio 90%
Ácido Nítrico 25% Cianuro de Cobre Hidrato de Cloral Sol. Sat. Bisulfato de Sodio Trietanolamina
Ácido Oléico Cianuro de Potasio Hidrato de Hidracina Sol. Sat. Cloruro Cuproso Urea
Ácido Ortofosfórico 50% Ciclohexanol Hidrocarbones Alifáticos Sol. Sat. Cloruro de aluminio Yodo (alc. Sol.) Conc.
Ácido Oxálico Ciclohexeno Hidrógeno Fosforado 100% Sol. Sat. Cloruro de Níquel Yoduro de Potasio
Ácido Perclórico 20% Clorato de Potasio Hidrosulfito 10% Sol. Sat. Cloruro Hierro (II) Yoduro de Sodio
Ácido Pícrico 1% Clorato de Sodio Hidróxido de Aluminio Sol. Sat. Cloruro Hierro (III)

Catálolgo de Cubetos de Retención en Polietileno Inteco Astur 2019.